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ABSTRACT

A method is presented for determining optimal feedback
controls for linear gaussian stochastic systems, when the sys-
tem state cannot be determined without error and the cost func-
tion is nonquadratic. The method is applied to the minimum fuel
spacecraft midcourse guidance problem and the form of the optimal
feedback control is determined.
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a point on the control threshold
expected cost to complete the process
estimation error

expectation

probability density

measurement matrix

index denoting time t,

dimension of the measurement vector
total expected cost

dimension of the state vector
incremental cost function at each time step
measurement vector

measurement history

index denoting time tn

higher order terms

dimension of the control vector
covariance of e

index denoting the last time that control is
applied tq

pseudo measurement vector
pseudo measurement history
processed measurement information
variance of s

control vector

process noise

covariance of v
measurement error
covariance of w

state vector

partial state vector

partial state vector
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control threshold.
nonzero control set
admissible control set

zero control set

state transition matrix
control influence matrix
terminal cost function

dummy variable of integration
dummy variable of integration
terminal weighting

partial derivative

extrapolation
transpose
inverse

optimal
conditional mean

minimum variance estimate



) Introduction

A common engineering problem is the design of a feed-
back controller to minimize an expected cost, when the plant
to be controlled is a stochastic system and its state cannot
be measured without error., The controller must Operate on
partial information and base its action on the available mea-
surements and the a priori statistics of the system. The
first published results applicable to this problem seem to
be the papers of Joseph and Tou [11] and Gunkel and Franklin
[10], which present a separation theorem for discrete time
systems. This theorem states that if the plant is linear
and the cost function is the expectation of quadratic forms,
then the problems of estimation and control may be solved
separately. The estimator is determined by the methods of
Kalman [12] and the controller is designed using the calculus
of variations to minimize the cost function, under the assump-
tion that the system is deterministic. The cascade combina-
tion of these two systems provides the optimum over-all feed-
back control. Florentine [9] also derives the theorem and
examines the role of the estimated state as a sufficient
statistic, Potter[15] extends the result to continuous sys-
tems. An extensive treatment of the general problem, without
restrictions of system linearity or quadratic cost, was pub-
lished by Fel'dbaum in a series of four papers [8]. He de-
velops a method of solving these problems and illustrates the
method with quadratic cost examples. Stratanovich [16] and
Kushner [13] both examine the general problem and develop
functional equations. Stratanovich demonstrates the solu-
tion of a bounded control problem with perfect measurements
and Kushner outlines the solution for systems with measure-
ment uncertainties. Orford [14] handles a problem with ter-
minal cost function and bounded control, and solves a space-
craft guidance problem. Striebel [17] provides a mathematical



treatment of the general problem and illustrates the method
of solution for the linear gaussian case. Finally, the re-
cent book by Aoki [1] develops an approach which is more gen-
eral than Fel'dbaum's and the book illustrates the solution
of many quadratic cost problems,

Linear gaussian systems are of interest because they are
good models for many actual systems and they admit practical
solutions to a number of interesting problems. Of particular
interest here are systems for which the plant state cannot be
determined without error, the cost function may be non-quadratic
and the control may be required to lie in some set of admissible
controls., Much of the theory involved has been published else-
where however it is not well known by engineers interested in
applications. This paper presents a tutorial exposition of
the theory together with the detailed solution of a minimum
fuel spacecraft guidance problem. It is hoped that the results
presented will stimulate interest in applying the theory to
other practical problems,

2, Problem Statement

It is assumed that the plant may be described by discrete
linear equations,

x(n+l) = ¥(n+l,n)x(n) + 6(n+l,n)u(n) + v(n) (2-1)

where

state vector of dimension k

x(n)
u(n) = control vector of dimension p
$é(n+l,n) = state transition matrix (kxk)
6(n+l,n) = control influence matrix (kxp)

The initial state x(0) is a k vector of normally distributed
random variables with known statistics and v(n), the process
disturbance, is a k vector of gaussian random variables, inde-
pendent of x(n) and u(n), with statistics given by



E[lv(n)] =0

Elv(n)vT(n)] = v(n) Elv(n)vTi(i)] =0 (2-2)
i#n

A set of admissible controls U(n) is defined so that prob-
lems involving constraints on the control may be handled. The
set U(n) can depend upon parameters other than time. It may,
for example, depend in some way on the control or measurement
history. 1In what follows, it is only required that U(n) be
known deterministically by the controller at time tn‘

The feedback controller has a measurement process m(n)
available to it, with

m(n) = H(n)x(n) + w(n) (2-3)
where

m(n) = measurement vector of dimension j

H(n) = measurement matrix (jxk)

The measurement error w(n) is a j vector of gaussian random
variables with statistics given by

Elw(n)] = 0

E[w(n)wT(n)] = W(n) E[w(n)wT(i)] =0 i#¥n (2-4)

and w(n) is independent of x(n) and v(n).
The cost to be minimized is assumed to be of the form

q
J = E[ ZlL(X(n).u(n).n) + Z(x(q+l))] (2-5)
n=

Control begins at time tl and the last control is applied at
time tq, with tq+l
is a scalar penalty at each time step and g(x(q+l)) is a scalar

a specified terminal time, L(x(n),u(n),n)

terminal penalty. The expectation in (2-5) is conditioned on
all a priori information,



It is desired to find the admissible control u(n), as a
function of the past history of measurements up to time tn'
that will drive the plant so that the expected cost J is mini-
mized. Note that functions L(x(n),u(n),n) and #(x(g+l)) are
not required to be quadratic in x(n),u(n) and x(q4l).

3. Estimation and Sufficient Statistics

Consider two k vectors y(n) and z(n), defined to satisfy
the equations

y(n+l) = &(n+l,n)y(n) + v(n) y(0) = x(0) (3-1)
z(n+l) = ®(n+l,n)z(n) + 6(n+l,n)u(n) =z(0) =0 (3-2)
u(0) =0
and evidently from (2-1)
x(n) = y(n) + z(n) (3-3)

The vector y(n) contains all uncertainty about the state and
z(n) describes the known effect of the control on the state.
Also define a pseudo measurement process r(n) as

r(n) = m(n) - H(n)z(n) (3-4)

Since m(n) is known by the controller and z(n) may be cal-
culated from the control history according to (3-2), r(n) is
known by the controller. With (2-3), (3-3) and (3-4), r(n)
may be written as

r(n) = H(n)y(n) + w(n) (3-5)

Equation (3-1) describes a linear system perturbed by
uncorrelated, normally distributed, random disturbances., Ac-
cording to (3-5) the pseudo measurement process is composed
of linear combinations of the state y(n) plus random measurement



errors w(n). The minimum variance estimate of y(n) plays a
crucial role in the determination of the optimal feedback con-

trol. Kalman [12] and Battin [2]) have shown that the minimum
variance estimate of y(n), given measurements r(n), can be cal-

culated from the following recursion formulas

() = § (m)+p (MHET(n)[HM)P (n)HT (n)+w(n)] @) -Hm)3 (n)]
¥ (n+l) = &(n+1,n)¥(n) $(0) = E[x(0)] (3-6)
P(n) =P (n)-P (n)HT (n)[H(n)P (n)H(n)+W(n)]) YH(n)P (n)

P'(n+l) = ¢(n+l,n)P(n)@T(n+1,n)+V(n) P (0)=cCov[x(0)]

Define e(n) as the estimation error, so

e(n) = y(n) - y(n) (3-7)

It is well known that
Ele(n)] =0 (3-8)

with the covariance of e(n) identified as matrix P(n) in (3-6)
and it can be readily shown that y(n) and Y(n) are normally
distributed, so e(n) must be normallly distributed. To in-
vestigate some additional statistical properties of the error
e(n), define the history of pseudo measurements from the ini-
tial time up to time t, as the n-j dimensional vector R(n)

Hence

RT(n) = [rT(1),r7(2),...,r5(n)] (3-9)
and it has been shown by Kalman [12), that the estimation error
e(n) must be uncorrelated wi th the measurement history R(n).

Ele(n)RT(n)] = 0 (3-10)

From (3-1), (3-5) and the statistics of x(0),v(n) and w(n), it
is clear that r(n) and therefore R(n) must be normally distribu-
ted. Thus e(n) and R(n) are normally distributed and uncorrelated,
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so they must be statistically independent. Now define the his-
tory of actual measurements from the initial time up to time t,
as the n.j dimensional vector M(n).

MT(n) = [mT(1),m (2),...,m (n)] (3-11)

Assume that some arbitrary admissible control function uf[.], of

the measurement history M(n), is specified and the control at
time tn becomes

u(n) = u[M(n),n] (3-12)

Note that u[M(n),n] may be a nonlinear function of M(n). Further,
from (3-12), knowledge of M(n) implies knowledge of the entire
control history u(l),u(2),...,u(n). Considering (3-12), (3-11),
(3-4) and (3-2) it is clear that the process r(n) is a determini-
stic function of M(n). By similar reasoning, the process m(n)

may be considered to be a deterministic function of R(n). Figure
1 illustrates, in block diagram form, a method by which m(n)

could be calculated from r(n).

6a



Hence M(n) is a deterministic function of R(n) and since e(n)
and R(n) are independent, it follows that e(n) and M(n) are
independent. It should be emphasized that e(n) and M(n) are
independent even when u[M(n),n] is nonlinear,

Consider an estimate of the state x(n) defined as Q(n)
and given by ‘

%(n) = y(n) + z(n) (3-13)

It can be shown that §(n) is the minimum variance estimate of
x(n). Recursion formulas for this estimate are readily obtained
from (3-13), (3-6), (3-4) and (3-2)

%(n) =% (n)+2 (n)HET(n)[H(n)P (MHT (n)4+W(n)] m(n)-E(n)% (n)]

Al - A (3-14)
x (n+l) = &(n+l,n)x(n)+6(n+l,n)u(n) x(0) = E[x(0)] (3-15)
and P'(n) is obtained from the last two of Egs. (3-6). The

error in this estimate is, from (3-13), (3-7) and (3-3)

%(n) - x(n) = [(Y(n) + z(m)] - [y(n) + z(n)] = e(n) (3-16)

so the error in Q(n) is identical to the error in §(n). it
was shown above that e(n) and M(n) are independent so the error
in the estimate ﬁ(n) is independent of the measurement history
M(n). Of importance here is the fact that even though x(n) and
§(n) may not be gaussian, because the control function u[M(n),n]
may be nonlinear, the error in ﬁ(n) and the measurement history
M(n) are still independent.

At this point, the statistical properties of Q(n) and
e(n) can be utilized to obtain an expression for the posterior
probability density of the state, conditioned on the measure-
ment history. To that end, write the state as the difference
between the estimate Q(n) and the error e(n)

x(n) = Q(n) - e(n) (3-17)



The estimate Q(n) is a deterministic function of the measure-
ments and e(n) is independent of the measurements. Also e(n)
is normally distributed with zero mean and covariance P(n).
Hence the posterior probability density of x(n) is

_1
lp(n)| Zexp {- %[€-§(n)]TP(n)"l[g—fé(n)]}
(3-18)

(ST

fx(n)[élu(n)]=(2ﬂ)

It is assumed that the error covariance matrix P (n) can be
determined a priori. Since P(n) and Q(n) uniquely determine
the posterior state probability density and P(n) is known a
priori, the estimate Q(n) is a sufficient statistic for deter-
mining the posterior state probability density. 1In effect
§(n) summarizes all posterior information about the state

that is obtained by the controller from the measurement his-
tory M(n), and the posterior probability density for x(n) may
be given as

£ (ny (B1XM)) = £ [E{M(n)] (3-19)

4, Measurement Information Statistics

In the preceding section an expression for the posterior
state probability density was developed. To determine the op-
timal feedback control function, some additional properties of
the estimate ﬁ(n) are necessary. Define a k-dimensional vector
s(n) as

s(n) = ¢ (AT () [HEP (E ()W ()] Hmn) -#m)R ()] (4-1)
so (3-14) becomes

%(n) = % (n) + s(n) (4-2)
Hence %' (n) is the estimated state extrapolated forward from

time tn__1 to time tn and s(n) represents the incremental change

-8-



in the estimated state as a result of processing the measure-
ment m(n)., Using (2-1), (2-3), (3-15) and (3-16), the vector
s(n) may be written as

s(n) =P (nMHET (M) [H()P (n)HT (n)+w(n)] L{u(n)[v(n-1)
-®(n,n-1)e(n-1)+w(n)] (4-3)

so with the help of (3-6), the mean and covariance of s(n)
become

Els(n)] = 0

E[s(n)sT(n)] = s(n) =p (n)E (n)[H(n)p ' (n)uT(n)+w(n)]1 H(n)p" (n)
(4-5)

It can be readily shown, using the results above, that the s(n)
are gaussian random vectors, independent of each other and each
s(n) is independent of the entire history of the system before

time t, (i.e. the s(n) are independent gaussian increments).

5. The Optimal Feedback Control Function

In this section, the properties of the sufficient statistic
%X(n) will be used to determine the optimal feedback control func-
tion. Consider a partially completed process at time t in the

interval ty <t Assume that some arbitrary admissible

< ¢t .
n — g+l
control function u[M(i),i] has been used in the past and an ad-

missible control function u*[M(i),i] is to be used in the future,

Define a minimum expected value function C*[M(n),n] as follows:

c*[M(n),nl= minimum expected cost to complete the
process from time t.. given the measurement history
M(n), using the admissible control function u[M(i),i]
in the interval tlfti<tn and the admissible control

. (x Y . < <
function u*[M(i),i] in the interval t <t. tq+l

By definition u*[M(i),i] is the admissible control function
which, if used in the interval t < t, < tq+1, will produce



the minimum expected cost to complete the process,

q+l° The last control
decision was made at time tq, so from the definition above and
(2-5).

Consider C* at the terminal time t

c*[M(g+l) ,q+l] = E[&(x(q+l)) |M(g+l)] (5-1)

The conditional expectation may be evaluated with the help of
(3-18) and (3-19), so if F(R(q+l)) is defined as*

Fxian)) =\ ar . Saggoe, o) @R@yy -2

o0 -0

then (5-1) becomes
c*[M(q+l),q+l] = F(k(a+1)) (5-3)

Since the right side of (5-3) is a function of Q(q+l) only,
which is itself a function of M(q+l), then without loss of
generality the minimum expected value function at time tq+l
may be considered to be a function of §1q+1) instead of
M(g+l). This important change of variables is achieved be-
cause‘Q(q+l) is a sufficient statistic. Applying the defi-
nition at the next previous time tq obtains an expression

for c*[M(q),q]

c*m(@.al =, Tetq E[L(x(q).um),q>+¢(x(q+1))\M(q),u(q)]}
(5-4)

If the function-ikQ(n),u(n),n) is defined as

TEm,um,n = §ag, ... agae am g o Elxm) (5-5)

-0 [>]

then by the same arguments used above

C*[M(q).q]=u(q’;‘i€%(q) E(Q(q).u(q).q)+E[¢(x(q+l))|M(q).u(q)]}(5—6)

* Here and in the sequel, convergence of multiple infinite
integrals is tacitly assumed.

-10-



To evaluate the second term on the right of (5-6), the pos-
terior density of x(g+l), given M(q),u(q) is required. The
evaluation of this expression is performed in appendix A
and the result, when substituted into (5-6) yields

c*[m(q).ql=u(q§‘§§(q){£<§(q).u(q),q)+ ag,...\ag £, (8
'B(Q-(q+1)+§)} (5-7)
where X'(q+l) is determined by (3-15) and £s(qe1) (8) is the
probability density of s(qg+l), determined by
-k 1
fom (8) = @M lsm)] Zexp {— %gTs(n)'lg} (5-8)

with S(n) given by (4-5),

By virtue of (3-15) and the minimization over U(q), the
right side of (5-7) is a function of R(gq) and qg. Hence, with-
out loss of generality, the minimum expected value at time t

may be written as a function of X(q) instead of M(q). 1If,

therefore, the minimum expected value functions at times t

and tq+l are redefined as functions of X(q) and X(g+l): (5-3)

and (5-7) become

A A
C*(x(q+l),q+l) = B(Xx(q+l)) (5-9)
«© >
x (D - min = S .

c*(x(q),q) u(q)eu(q){L(X(q).u(q).q)+gd§1.. a8y e (qr1) (B

-0 -00

1

c*(ﬁ'(q+1)+g,q+1)j (5-10)

By applying this reasoning to each successive backward time
step, and invoking the principle of optimality [3,4,5,7] it
is found that the backward recursion formula

-11-



c*(R(n) ,n)=u(n’;‘t§(n,{i(£(n> ), m+lae, . Sag e e

c* (X" (n+1)+§,n+l)} (5-11)

must be satisfied at each time step. ‘

The error covariance matrix P(n) is assumed known a priori
so the posterior densities (3-18) and (5-8) are known a priori
as functions of X(n) and n. Hence L(x(n),u(n),n) and B(ﬁ(q+l))
can be determined a priori as functions of Q(n),u(n) and Q(q+1)
respectively. Further, it is assumed that if the control set
U(n) depends on the control or measurement history, then Q(n)
is sufficient to determine U/(n).* Under these conditions
the system (5-9), (5-11) is closed and the function C*(X(n),n)
is obtained by its solution. The method of solution is es-
sentially the Dynamic Programming procedure of Bellman [ 7]
and as a result of the minimization in (5-11), the optimal

control is determined as a function of the estimated state.

u*(x(n),n) = u*[M(n),n] (5-12)

6. Midcourse Spacecraft Guidance

As a means of demonstrating the application of the me-
thod developed above, a minimum fuel spacecraft guidance prob-
lem will be solved. Because of random errors made in injecting
the spacecraft into its trajectory, impulsive midcourse velo-
city corrections are necessary if the vehicle is to hit the
target with acceptable accuracy. It is assumed that there is
a reference trajectory defined which passes through the nomi-
nal point of injection and the nominal target point, Further,
deviations from the nominal are assumed to be sufficiently
small so that linearizations about the reference trajectory
are valid. During the midcourse phase, the spacecraft is

*This is not a restriction on most practical cases because Q(n)
can usually be augmented by additional variables which are deter-
ministic functions of the past and which completely determine U (n).

-12-



tracked by radar systems based on earth. The radars provide
velocity measurements in the directions of the radius vector
from Earth to the spacecraft and these measurements contain
gaussian random errors. Estimates of spacecraft position
and velocity are computed from this information using re-
cursion formulas (3-14) and (3-15). ,

The cost to be minimized is the expected total fuel ex-
penditure, plus a quadratic weighting on the miss distance
at the target, so

q
7=l 2 lam i+ 2 xT(@+l)x(q+1)] (6-1)
n=

where the terminal time tq+1 and correction times tn are fixed,

u(n) = Velocity correction applied at time tn
x(g+l) = Position deviation at the target

and q is the total number of velocity corrections applied.
Since the cost involves only the velocity corrections and the
position deviation at the target, the problem may be somewhat
simplified by projecting the state forward, at each point in
time, to the target. Thus, if x(n) is defined as the target
miss vector based on the spacecraft history up to time tn'
then x(n) satisfies the recursion formula

x(n+l) = x(n) + 6(n)u(n) (6-2)

This equation implies that the target miss vector at time
t,4ycan be altered by the application of a velocity correc-
tion at time tn and conversely if no correction is applied,
then the target miss vector is unchanged. Matrix 6(n) de-
termines the effect of the velocity correction at time tn on
the target miss vector. x(n) is the state vector of interest
for the problem at hand and (6-2) determines its evolution in
time,

-13-



Functions g(%(q+l1)) and L(X(n),u(n),n) are obtained from
(5-2), (5-5) and (3-18)

FR(ar1)) = 3 @T(a+rD)k(a+1)+Telp (g1) 1) (6-3)

L(X(n),u(n),n) = ||lu(n)]| | (6-4)

so the minimum expected value function must satisfy

C* (X (n) ,n)=u"(‘ri1’)1 {\ lu(n) | |+gd§l..gd§kfs(n+l) (§)C*(5\c'(n+l)+§,n+l);
~ ~o0 (6~5)

where

x'(n+l) = x(n) + 6(n)u(n) (6-6)

Now define the function C*'(Q,n) as

C*'(ﬁ,n)=§d§l..gdfkfs(n+l)(g)C*(§+€,n+l) (6-7)

-0 [= ]

and (6-5) becomes

c*(R(n),n)=_To0 5\ lam) | 1+c G+ (n+1) ,m) | (6-8)
u(n) \ ‘

If the s(n) matrix is positive definite, then C*' has continu-

ous second partial derivaties and (6-8) may be expanded about Q(n)

to produce

—

c* (% (n) .n)=u"('i§‘{| lu(n) | [+c** (X (n) ,n)+|;§;' (:’é.n)Je(n)u(n)m[ | lu(n) | H}
- R=x% (n) (6-9)

where 3c*'/3% is a row vector of first partial derivatives
(gradient). Equation (6-9) can provide some useful conditions

for a minimum. If X(n) lies in the set Z(n) where

-14-



|

! 1911_’(\2..&)_ 6(n)
ox

{
(n) = < x:
B )

then u(n) = 0 yields a local minimum on the right of (6-9).
Conversely, if X(n) is an element of the set-R(n) given by

A (n) = 5 X

ACk (X
ax

then a minimum in (6-9) cannot occur for u(n) = 0. Assuming
that'Q(n)éﬁKn), the term in braces on the right of (6-8) is
differentiated with respect to u(n)

Ll

i b T . 12 N
gua‘) = T l: )(T)‘ + ! aC*alfx.n) Je(n) x(n) e”{n) (6-12)
un L X

£=% (n)+6 (n)u(n)

A necessary condition for a minimum is satisfied if the direc-

tion of u(n) is

—u(n) = "GT(n)
| la(n) || |

%=X (n)+6(n)u(n)

and its magnitude is such that

1 =

dck! (X
“c—;,{}"‘m‘ 6(n)
X

K=% (n)+6(n)u(n)

Equations (6-10), (6-11) and (6-14) indicate that the control
must drive the estimated state to a point on the boundary be-
tween ¥(n) and A(n). Define the boundary as

B (n) ={%:

|

! A

i ac*'ix,n) 6 (n)
{ X

-15-

<1°> (6-10)

> 15 | (6-11)

Ac*' (x,n) R(n) eA(n) (6-13)

% (n) €#(n) (6-14)

= l% (6-15)



so if b*eB(n) is the point to which u(n) drives the estimated
state, then (6-13) determines the direction of the control and
b* gatisfies

T

b* = X(n)-6(n)6T(n) BC*;Ax n | (6-16)
X

~ X=b* eB(n)

Thus to each element b onB(n) there is associated a necessary
trajectory direction given by

d(b,n) = -6(n)6T(n) “C*;A" n (6-17)
X
5(‘=b€3(n)

It can be shown [6] that these necessary conditions are
also sufficient to determine the optimal control and that the
optimal control is unigque at each point of the ﬁ(n) space. In
terms of the definitions above, the optimal control u*(x(n),n)
is given by

go if R(n)e¥n)VB(n)
u*(x(n),n) = ¢

(6-18)
6L (n)[b*-R(n)] if ®(n)eA(n) s

where b* satisfies
b* = X(n)+ pd(b*,n) p> 0, b*ef(n) (6-19)

A typical solution for b*, in the two dimensional case, is
illustrated in Fig. 2. To obtain the solution, it is necessary
to know the boundary]B(n) and vectors d(b,n). Knowing these,
Zﬁ(n) can be searched for the point b* which satisfies (6-19).
Boundary A(n) and vectors d(b,n) are determined by digital com-
putation using (6-3), (6-7) and (6-8). A(n) is determined by
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2(n)

\ \\\ | OPTIMAL TRAJECTORY
R(n) \ :

x N\

b Z(n)
B(n) k —d(b*,n)
b's /
d(b,n)’s
B(n)
Z(n)
R(n)

Fig. 2 Typical Solution for b*

(7



searching the % space for points satisfying (6-15). By making
the search fine enough, the points b will lie sufficiently
close together to give an accurate representation of A(n).
Vectors d(b,n) are then calculated from (6-17).

Actual numerical solutions for the two dimensional case
(ignoring errors out of the plane of the reference trajectory)
were obtained for a typical Earth-Mars mission [6]. Two cor-
rections were assumed, one very early in the flight (2 hours)
and the second at the Earth sphere of influence (56 hours).
The situation at two hours was similar to the diagram in Fig,
2. At 56 hours the optimal control was essentially a total
correction which drove the estimated miss distance to zero.

A solution for the one dimensional case was obtained by Tung
and Striebel [18],

7. Conclusions

It is useful to note that equations (5-9) and (5-11)
correspond to a stochastic optimal control problem for which
the state is a Markov process that can be measured without
error, In particular, ﬁ(n) is a Markov process, s(n) is a
gaussian disturbance and (5-9), (5-11) correspond to a cost
function for which L is the incremental cost and g is the
terminal cost.

For most practical problems, the solution of (5-9), (5-11)
must be obtained by approximation on a digital computer. 1In
particular, the multidimensional integral on the right of (5-11)
must be evaluated. It can be shown [6] that fs(n+l)(g) is the
Green's function for a multidimensional diffusion equation.

In many cases it is easier to evaluate the integral by appro-
ximating the solution of the diffusion equation, using central
differences, than to work directly with quadrature formulas.

Finally, from the example problem, it is clear that the
minimum fuel spacecraft control is determined by threshold
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surfaces in the § space, If the estimated state lies on one
side of the threshold, then the optimal control drives the
estimated state to the threshold, oOn the other side of the
threshold the optimal control is zero.

8, Appendix A

The expectation of g, conditioned on the measurement his-
tory M(q) and control u(g) is desired. The state at time
tq+1 18
x(q+l) = %' (q+l)-e (q+1)+s(g+l) (A-1)
where Q'(q+l), e(g+l) and s(q+l) are mutually independent. If
a(g+l) is defined as

a(g+l) = % (q+1) e (q+1) (A-2)
then the conditional density of a(q+l) is

-1
|p (q+1) | 2exp{— 3L c-x* (q+1)]7.

b

fa(q+1)[Q|M(Q).u(q)]=(2ﬂ)

P(a+l) Mokt (@)1} (a-3)

Since a(g+l) and s(g+l) are independent

fe @y LEM@u@] = Sa¢; . Sage, e, LTt ue)
-0 -0 (A—4)

and

[g]M(q) ,u(q)]

E[#(x(q+1)) IM(q),u(q)] = Sd§1°°gdgk¢(g)fx(q+l)

©o

(A-5)

Combining (A-4) and (A-5), reversing the order of integration
and applying (5-2) yields
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Bl (x(a+1)) M@ u@] = (ag;.Sage e, 0y Q& @1+ (a-6)

-0 -0

which is the required result,
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